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In  the  real  marketplace,  providing  high-quality  olive  oil is  important  from  the  perspective  of  both  con-
sumers  and  producers.  Quality  control  should  meet  all  requirements  in  the  production  process,  from  farm
to  packaging.  The  quality  of olive  oil can  be  affected  by several  factors,  including  agricultural  techniques,
seasonal  conditions,  farming  systems,  maturity,  method  and  duration  of  storage,  and  process  technology.

The  quality  of  oil  produced  also  depends  largely  on  the  quality  of  the  olives.  In  an  enterprise  aimed  at
producing  high-quality  oils,  olives  with  defects  (‘ground’;  i.e.,  fallen  to the ground)  should  be  separated
from  healthy  fruit  (‘sound’;  i.e.,  collected  directly  from  the  tree),  because  a very  small  portion  of low-
quality  fruit  can  ruin  the  whole  batch.

The fruit  falls  partly  because  of  its  maturation  process,  but also  because  of  pest  and  disease  attack  or
weather  conditions  (strong  wind).  Fruit  that has  fallen  to the  ground  can  suffer  a rapid  deterioration  in
quality.

Currently,  the  separation  of  fruits  is  based  mainly  on  visual  inspection  or information  provided  by
the  farmer.  These  are  not  very  reliable  procedures.  Methods  using  analytical  parameters  to  characterize
the  oil,  such  as  acidity  and  peroxide  value,  can  be  applied,  but  they  require  a  lot  of  time  and  materials.
Alternative  techniques  are  therefore  needed  for  the  rapid  and  inexpensive  discrimination  of  olives  as
part  of  a quality  control  strategy.

The work  described  here  aims  to determine  the  potential  of  low-resolution  Raman  spectroscopy  for
the  discrimination  of  olives  before  the  oil  processing  stage  in  order  to detect  whether  they  have  been  col-
lected  directly  from  the  tree  (i.e.,  healthy  fruit)  or not.  Low-resolution  Raman  spectroscopy  was  applied
together  with  multivariate  procedures  to  achieve  this  aim.  PCA  was  used  to find  natural  clusters  in  the
data.  Supervised  classification  methods  were  then  applied:  Soft  Independent  Modeling  of  Class  Anal-

ogy  (SIMCA),  PLS  Discriminate  Analysis  (PLS-DA)  and  K-nearest  neighbors  (KNN).  The  best  results  were
obtained  using  the  KNN  method,  with  prediction  abilities  of  100%  for ‘sound’  and 97%  for  ‘ground’  in an
independent  validation  set.

These results  demonstrated  the  potential  of  a portable  Raman  instrument  for  detecting  good  quality
olives  before  the  oil  processing  stage,  by developing  models  that  could  be applied  before  this  stage,  thus
contributing  to  an  overall  improvement  in quality  control.
. Introduction

A  series of important stages, from farm to packaging, are
nvolved in producing good quality olive oil. The quality of the oil
an be affected by several factors, including agricultural techniques

sed, seasonal conditions, farming systems, maturity, method and
uration of storage, and process technology. The harvesting stage

s a very important one in the production of good quality olive
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oil. When harvesting olives, it is important to check the state of
ripeness in order to ensure that, during the oil processing stage, the
extraction yield and oil quality are optimal. Harvesting can have an
important influence on the quality of the oil produced, as well as
on the production costs and therefore on the olive farm economy.
In terms of quality, there are three main issues to consider when
harvesting olives: the collection time, the origin of the fruit, and
the method of collection [1].
Under normal conditions, variety and agronomy have no clear
influence on the quality regulated. Any variety and a range of agro-
nomic conditions can provide oils that can be classified as extra
virgin, if obtained from healthy olives collected at the optimum
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nd appropriate time and put through the correct milling process
2,3].

A delay in harvesting olives can lead to the natural fall of the
ruit (over-ripe olives), accelerated by wind; the degree to which
his happens depends on the variety [4].

The fruit on the ground can suffer from a variety of defects
aused by diseases, pests and ground frost, reducing the quality
f the oil subsequently produced. In an earlier study, it was  shown
hat some quality indexes for oil were not affected by frostbite, but
he oil became less stable and there were some sensory changes.

When  olives are on the ground for several days, this leads to
 deterioration of the fruit pulp which, in turn, adversely affects
il quality. This loss of quality results in increased acidity, a higher
eroxide index and a deterioration in the sensory characteristics of
he oil, as demonstrated in several previous studies [5].

After  harvesting, the most important factor affecting fruit qual-
ty is storage prior to production, which, if inadequate, can lead to
igher acidity and peroxide values and promote enzymatic activi-
ies, leading to deterioration in sensory characteristics [6].

For  all these reasons, it is very important to collect, transport
nd process healthy fruit separately from defective fruit, as small
mounts of defective fruit can significantly alter the organoleptic
haracteristics of oils obtained from healthy fruits and thus reduce
heir quality. Fruit that has the potential to provide good quality oils
i.e., healthy olives picked from the tree) must follow a different
oute from the outset – from collection on the farm and factory
eception and milling process to storage of the oil produced.

When  olives arrive at the factory, there should be a control check
hereby their quality is continuously evaluated. The oil produc-

ion sector is making a major effort to improve the quality of virgin
live oil, but sometimes there is inadequate control and verifica-
ion at the point when olives first enter the factory. In most cases,
uality control at this stage is based on visual observation of the
lives or information provided by the farmer. Thus, the method of
live harvest is an important checkpoint in the process of produc-
ng high quality olive oils, and alternative techniques are needed
or the rapid and inexpensive discrimination of olives at this stage,
s part of a quality control strategy. An important first step, there-
ore, lies in the quality control of the fruit at the factory reception
tage and the classification of olives at the start of the production
rocess, and the need to avoid mixing of olives of different qualities
y using fast, safe and clean analytical methodologies.

The characterization of olive fruit by means of optical technolo-
ies has been developed mainly by NIR and Raman spectroscopies.
ith this purpose, NIR technology has been applied to the direct

nalysis of intact olives for the determination of fat content and
oisture, including in some cases other parameters like free acid-

ty, fatty acid composition, olive variety and fruit traits [7–13]. In
ther contributions, NIR spectra have been collected after grind-
ng of olive fruits, in the resulting pulp [14–17]. On the other hand,
aman spectroscopy has been proposed for the determination of
everal compositional and quality parameters in olives after grind-
ng. Thus, fat and moisture [18,19], free acidity [20], carotenoids
nd phenolic compounds [18] have been evaluated.

Concerning olive oil analysis, Raman spectroscopy has been
ainly applied to authentication purposes, to classify PDO olive

ils [21,22] and to detect adulteration with other low price oils
23–34]. This technique has been also applied to the determina-
ion of the oxidative degradation [35], free acidity [36,20] and the
haracterization of antioxidant olive oil biophenols [37].

To  our knowledge, there are only two contributions dealing with
he evaluation of fruit quality, from a point of view of origin of

ruit (tree or soil) or status (sound or affected by some disease,
rostbite or fermented). For this purpose, NIR [38] and Raman [39]
pectroscopies have been applied, achieving a high classification
apability.
Fig. 1. System designed for this work in order to take Raman measurements.

In this study, a portable low-resolution Raman spectroscopy
method was applied for the discrimination of olives according to
their ‘ground’/‘sound’ origin. The work aimed to ensure the qual-
ity of olives before they entered the oil production process. In an
earlier study, some applications of this technique for determining
the quality parameters in olive oil oxidation [40] were reported.
This technique was  based on using an instrument that was small,
inexpensive and easily installed for checking the quality of oil pro-
duction process.

2.  Materials and methods

2.1.  Samples and sample preparation

One hundred ninety-two olives samples from 11 Spanish vari-
eties, mainly Picual, were harvested and analyzed from October to
March over 2 years (the 2009–2010 and 2010–2011 harvests) at the
Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
center ‘Venta Del Llano’ in Mengíbar, Jaén, Spain.

The samples included 86 samples of ‘sound’ olives picked from
the tree and 106 olives collected from the ground, including frozen
and fermented olives. Table 1 shows, for both harvests, the quality
parameters for these samples, including humidity and oil content,
as well as the quality parameters of the oil extracted in a labora-
tory mill [41]: free acidity, peroxide value, and spectrophotometric
absorptions at 232 nm (K232) and 270 nm (K270).

Before the Raman measurements, the olives went through a
system which was  designed for this work in order to take measure-
ments of several probes with different instruments simultaneously
in the same experience (NIR, Raman and VIS measurements). This
system is a roller mill that had a circular stainless steel compo-
nent (4 cm in diameter) linked to the optical fiber probe Raman
equipment.

All the olives entered the mill through a hopper and passed
through the circuit where the Raman measurement was taken from
the olive paste using a glass window (2 mm thick).

Fig.  1 shows the structure that is designed to take the Raman
steps.

2.2. Raman spectroscopy analysis
The instrument used was  a portable Raman spectrometer model
RH-3000 (Ocean Optics); it had a 785 nm laser diode and was  linked
to an optical fiber that enabled measurements to be taken through
a glass container. The Raman spectra were recorded from 200 to
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Table 1
Standard deviation, mean and min–max reference values of the olive samples used in the study.

Harvest 2009/2010 Harvest 2010/2011

Max  Min  Mean SD Max  Min  Mean SD

Humidity (%) 53.07 40.69 45.77 2.83 61.82 40.51 48.58 4.65
Oil  content (%) 32.52 17.94 26.02 2.89 30.09 10.09 21.45 3.57
IP  (meq02/kg) 7.5 0.6 3.42 2.09 22.37 0.91 5.42 3.40

0.11 2.74 1.23 1.56 0.25
0.21 1.34 0.09 0.17 0.13
0.58 12.69 0.17 1.55 2.02
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K232 (UV abs.) 1.72 1.28 1.49 

K270 (UV abs.) 1.24 0.1 0.19 

Acidity  (%oleic ac.) 2.06 0.21 0.99 

700 cm−1, with a spectral resolution of 10 cm−1. The laser diode of
he instrument had an intensity range of 0–290 mW.  Spectra were
cquired with a laser intensity set at 190 mW,  and were the average
f 10 scans, resulting in an acquisition time of 5 min.

The equipment used a laptop, with the physical dimensions of 20
L) × 18 (A) and weighing about 4 kg, as a preliminary simulation of
he measurements that could be taken by coupling this equipment
n the factory mill, enabling it to be used during the production
rocess.

.3. Chemometrics

The first step involved classification, which was carried out using
n exploratory analysis with Principal Components Analysis (PCA)
n order to find trends that would group the samples based only on
heir spectral characteristics. PCA is an unsupervised technique that
educes the dimensionality of the original data matrix, retaining the
aximum amount of variability. It is an important tool for in the

ood exploration of data [42].
In the second step, three supervised classification methods were

sed: Soft Independent Modeling of Class Analogy (SIMCA) [43], PLS
iscriminant Analysis (PLS-DA) [44] and K-nearest neighbor (KNN)

45].
SIMCA classifies samples/spectra based on their similarities in

 principal components space. A principal components model is
uilt for each available class. For each modeled class, the mean
rthogonal distance of training data samples from the line, plane or
yper-plane (calculated as the residual standard deviation) is used
o determine a critical distance for classification. Based on these
istances, the classification of a new set of samples is obtained by
djusting each of these samples to each model and deciding, at a
5% confidence level, if the sample belongs to the corresponding
lass or not. In this model, the distance of a point from a class was
etermined by the out-of-space distance; that is, by the Euclidean
istance of the point from the subspace spanned by the k principal
omponents used to model the class [46].

PLS-DA is performed in order to sharpen the separation between
roups of observations, by rotating PCA components so that a max-
mum separation among classes is obtained, and to understand

hich variables carry class-separating information. PLS-DA con-
ists of a classical PLS regression where the response variable is a
ategorical one (replaced by the set of dummy  variables describing
he categories) expressing the class membership of the statistical
nits [47].

KNN  is a method for classifying objects based on the closest
raining examples in the feature space. By comparing the distances
etween the unknown object and the training samples, whose

loseness is known in advance, KNN with shortest distances is
elected, and the classification type represented by a simple major-
ty of the KNN is assigned to the known object. The Euclidean
istance is the most common algorithm used for this purpose [48].
Raman Shift (cm-1)

Fig. 2. Raman spectra of oil olive using dispersive Raman spectrometry.

2.4. Software

All  computations, chemometric analyses and graphics were per-
formed using Matlab v7.4.0 (The Mathworks, Inc., Natick, MA,  USA).
For PCA and supervised methods (SIMCA, PLS-DA, KNN). The PLS
toolbox v. 4.11 (Eigenvector Research, Inc.) was  used.

3.  Results and discussion

Figs.  2 and 3 shows characteristic dispersive Raman spectra of
0 500 1000 1500 2000 2500

Raman Shift (cm-1)

Fig. 3. Raman spectra of sound and ground olive paste using dispersive Raman
spectrometry.
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Table 2
Calibration and validation results in terms of classification ability given in percent-
age  of PLSDA, SIMCA and KNN classification.

SIMCA PLS-DA k-NN(3)

Cal set Val set cal set Val set Cal set Val set
GroundOlives

Fig. 4. PCA1 vs PC2 for calibration and validation set.

 ( C H) deformation in unconjugated cis double bond) 1302 (in-
hase methylene twisting motion), 1442 (ı(CH2)) and the band at
655 (�(C C)), dominate the spectra. The band at 1747 cm−1, which

s assigned to the �(C O) ester vibration, can be found in both oil
nd the olive spectra [49,50].

The  main difference in the spectra of the olives and olive oil
s the high fluorescence background that characterizes the olive
pectrum that overlaps with the typical oil bands. The difference
etween the spectra of the different kinds of olives (‘ground’ and

sound’) is also the fluorescence that is lower in the ‘sound’ olives
nd higher in the ‘ground’ olives or those olives with some type
f damage (fermented and frostbite). This fluorescence is probably
aused by the destruction of cell membranes and alterations in veg-
table matter, such as oxidation and enzyme reactions. The olives
re collected throughout the whole season (October–March) so that
ase the olives belong to all possible ranges of maturity indexes. In
uch a way, there are healthy and ground olives from green to black,
herefore the color is not the factor that differentiates these classes.

Apart from this fluorescence phenomenon, there are several
ariations of the relative intensity, little change in band positions,
nd small changes in the spectral contours between classes [39].

To define the categories in the classification, the unsupervised
CA method was used. Data pretreatment comprised only auto-
cale, which is a common preprocessing method that uses mean-
entering followed by the division of each column (variable) by
he standard deviation of that column. This approach is valid for
orrecting different variable scaling and units if the predominant
ource of variance in each variable is a signal rather than noise.
nder these conditions, each variable will be scaled so that its useful

ignal has an equal footing with the signal of other variables.
Previously, the dataset had initially been randomly split into a

alibration set and a test set. The calibration set consisted of 142
pectra and was used to build the model; the test set contained 50
pectra and was used to validate it.

The PCA model was calculated for seven principal components,
ith an explained variance of 96%. Fig. 4 shows the scores for the
rst two principal components of the model, where a separation of
lives samples into different groups can be observed; the first PC
hows the separation of samples according to ‘sound’ or ‘ground’,
hereas the second component shows the separation of olives sam-
les according to the period harvest to which they belong. These
esults show that the fruits could be differentiated according to

arvest year, as reported by Gurdeniz et al. [51].

The preliminary exploratory analysis of data showed that Raman
pectroscopy can see the grouping of olives according to their spec-
ral characteristics and can be used for supervised classification
Sound olives 98% 100% 100% 92% 100% 100%
Ground olives 90% 73%  97% 100%  98% 97%

with two different classes or categories. This would allow a sep-
aration of the olives before their production, with ‘sound’ samples
prepared separately from ‘ground’ samples as they enter the oil
production process.

The  next step involved multivariate classification, using three
supervised methods: SIMCA, PLS-DA and KNN. The SIMCA and PLS-
DA models were constructed with seven main latent variables for
both classes. In the KNN method, the classification error depended
on the number of the nearest neighbors chosen for the analysis (k)
[52]. The best number of K neighbors was selected using a leave-
one-out procedure [53], with K values between 3, 5 and 7. For
K = 3, the recognition and classification abilities were 100% for the
discrimination. However, for K = 5 and 7, the prediction abilities
provided with KNN were 97% in both cases.

Table 2 provides a summary of the three model results for the
calibration and validation sets in terms of correct classification abil-
ity (in percentage).

The  linear classifiers (SIMCA, PLS-DA) gave good results for dis-
crimination between olive classes, with a low error of classification,
but KNN was  found to be the most effective classification technique.

The most important point is that KNN is a non-parametric
method where the quality of predictions depends on the distribu-
tion of some classes. Thus, the method can correctly classify objects,
although classes are not linearly or quadratic separable. The KNN
method sets irregular boundaries between classes, while the para-
metric methods such as SIMCA and PLS-DA depend on a distribution
determined by the statistical limits (Bayesian theorem) to establish
the boundaries between classes. In this study, the samples were
highly clustered and therefore the KNN method, which uses dis-
tances to the nearest neighbor to classify the samples, was the most
appropriate method.

The  results obtained using the KNN method correctly classi-
fied all ‘sound’ olives samples in external validation, and only one
‘ground’ olives sample was misclassified; the similar values in clas-
sification and prediction indicate that the model is fairly stable.
These results showed that the most appropriate classification tech-
nique for the classification task was the KNN method, which tended
to produce more robust results, although good classification ability
was  obtained with the PLS-DA and SIMCA models.

Finally, with the data we  had from different years, and using
SIMCA and PLS-DA methods, we  tried to use the data from one year
to calibrate olive samples and from another year to do the sam-
ple validation, but the results were not satisfactory (not shown).
The differences between different harvests were directly related
to sources of variation not included in the PCA; there were large
differences between samples and environmental conditions (tem-
perature, humidity and rainfall), the harvesting period differed for
the two  consecutive harvest years and the composition (fatty acid
profile) also changed. Geographical origin and harvest year are
known to have a significant influence on the fatty acid profile of
olive oil [54,55]. An earlier study on Cornicabra virgin olive oil
revealed significant statistical differences in quality indexes, major
fatty acids and sterol compositions in relation to year of production

[56]. The data included sources of variation that were not com-
pletely eliminated by preprocessing, so it is necessary to establish
a process for the transfer of calibration models in subsequent years
because of these variations among different harvests.
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In this study there were only 2 years of data, so prediction was
ifficult. More data from different years are needed in order to
btain reliable and robust prediction equations [11,57].

The  combination of portable low-resolution Raman spec-
roscopy and multivariate discriminant analysis in olives could be
n important tool for checking the quality of olives before they enter
he oil production process. This is necessary to ensure good quality
il by creating more controlled production processes and saving
uch expense by avoiding unwanted mixing.
This method has many advantages. It is rapid and inexpen-

ive because it does not need sample preparation. Also, it is
on-destructive and uses no chemicals, and is therefore environ-
entally friendly. Apart from these advantages, this technique

llows the possibility of coupling optical fibers, which can be
irectly inserted into the process or connected to a flow-cell
hrough which the sample can be diverted from the production
ine. This would allow complete control of the quality of the oil
efore, during and after the processing of the olives.
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